

LA-UR-17-30616

Approved for public release; distribution is unlimited.

Title: Humin to Human: Organic carbon, sediment, and water fluxes along river

corridors in a changing world

Author(s): Sutfin, Nicholas Alan

Intended for: Research Seminar Faculty Candidate Presentation at Texas State

University

Issued: 2017-11-20

Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

Collaborators

Joel Rowland, Sophie Stauffer, Mulu Fratkin, Meghan King, , Katrina Bennett, Richard Middleton, George Perkins

Earth and Environmental Science Division, Los Alamos National Laboratory

Ellen Wohl, Laurel Lynch, Bridget Livers, Katherine Lininger, Tim Covino, Claudia Boot, Matt Wallenstein

Colorado State University

Malak Tfaily, A. Kerem Bingol, Nancy Washton

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory

Kathleen Dwire, Timothy Fegel

Rocky Mountain Research Station, US Forest Service

Rosemary Carroll - Desert Research Institute

Ken Williams - Lawrence Berkeley National Laboratory

Helen Malend - Colorado School of Mines

Funding

NSF IGERT I-WATER Grant No. DGE-1061 0966346 and NSF DDRI grant No. 1536186

Joel Rowland's Early Career Award from the Subsurface Biogeochemical Research Programs within the U.S. Department of Energy Office of Science, Biological and Environmental Research supported this work. Field support was provided by the Lawrence Berkeley National Laboratory Watershed Function Science Focus Area.

Research Interests

Physical process in rivers & healthy ecosystems

Feedbacks between flow, sediment, and biota

Climate & land use influence processes

How might these processes change

Freshwater socialecological balance

What does it mean to be human?

... humin?

Humin is the fraction of organic matter in soil that is not soluble in water

Snake River altered hydrograph (Marston et al., 2005)

Mamore River, Bolivia 1984 to 2015

Courtesy of Alex Bryk, UC Berkeley. **Compiled with** Google Earth **Engine**

Carbon dynamics are important in rivers

- Ecosystem processing (Vannote, 1980; Allan, 2001)
 - Foodwebs
 - Ecosystem services
- DOC and carcinogenic disinfectant byproducts (Coffin et al., 2000)
- Global carbon cycle
 - Carbon stocks
- Impacted by land use and land-cover changes
- Climate change and hydrologic regime

Rivers and streams as carbon sink

(Battin et al., 2009; Aufdenkampe et al., 2011, Cole et al., 2011)

Study Sites in Colorado

105°30'0"W **Study Sites in Colorado** Cache La Poudre River 0 10 20 Kilometers **Rocky Mountain** Salt NEE **National Park** ke City 40°30'0"N Park boundary UTAH Study sites Arkan Colorado **Estes Park** COLORADO PLATEAU ARIZONA **New Mexico** Phoenix Tucson El-Paso Te North Saint Vrain Creek Allenspark

Rivers & Carbon

H'erm osillo

Sediment & Carbon

Chihuahua

Hydrology & Floods Geomorph & Carbon

Human nfluence Future Work / Conclusion

105°30'0"W

Study Sites in Colorado

Soil sample collection

660 Soil Samples in RMNP

- Systematic random sampling along transect
- 15-cm depth increments (<180 cm)
- LECO TruSpec CN elemental analyzer

- 11 transects ~ 1 bankfull-width apart
- Topographic surveys at floodplain features <10 m apart
- Depth of sediment using rebar until refusal at survey points

Soil organic carbon content at RMNP

- Distance from the channel

Limited work on floodplain river carbon, particularly on spatial variability (Hoffmann et al., 2008; Noe and Hupp, 2009)

21

Abandoned channels and Cutoffs

Rivers & Carbon

Sediment & Carbon

Hydrology & Floods Geomorph & Carbon

Human nfluence Future Work Conclusion

East River channel migration and erosion

- 60 years of remotely sensed imagery
- 0.5-m resolution aerial lidar
- Calculate lateral erosion and sedimentation
- Characterize hydrograph

Bank erosion on the East River:

- Undercutting
- Cantilever failure (mass wasting)

Bank erosion on the East River:

- Undercutting
- Cantilever failure (mass wasting)

Linking hydrology to floodplain sediment flux

Linking hydrology to floodplain sediment flux

Impact of Extreme Floods on Floodplain Sediment

Rocky Mountain National Park North St. Vrain Creek watershed

Impact of Extreme Floods on Floodplain Sediment Rocky Mountain National Park North St. Vrain Creek watershed

Impact of Extreme Floods on Floodplain Sediment

Mean Age $(r^2 = 0.96, p < 0.001)$:

- Elevation
- Stream power (function of flow depth and channel slope)

Sediment Transport (adjusted $r^2 = 0.52$, p < 0.001)

- Geometry of valley
- Slope of the river

Hydrology & Floods

Channel Geometry: RMNP

Beavers dams and multithread channels

(Ives, 1942; Butler & Malanson, 2005)

100 ft

North Saint Vrain Creek

Multithread channels

- ~25% river network
- ~75% of TOC stored within riparian areas

Wohl, 2012. Nat. Commun.

Rivers & Carbon

Sediment Flux Hydrology & Floods

luman fluence Future Work

Geomorphology and carbon in N. St. Vrain Creek

660 soil samples at 24 study sites

Geomorphology and carbon in N. St. Vrain Creek

Why is there less carbon in multithread systems?

Geomorphology and carbon in N. St. Vrain Creek

Rivers & Carbon ediment Flux Hydrology & Floods

Human

Future Work

Geomorphology and carbon in N. St. Vrain Creek

PCA of Excitation Emissions Matrix Spectroscopy indices

Geomorphology and carbon along the East River

Carbon content across the floodplain

Varies weakly by distance from channel

Characterize carbon decomposition

Soil Samples: 0 - 5 cm, 5 - 15 cm, 15 - 30 cm Soil water extractions

- H₂O
- MeOH
- CHCl₃ (for the humins)

FT-ICR mass spectrometry

Decomposition Ratio = Protein/Lignin or (microbes/terrestrial)

Geomorphology and carbon along the East River

Geomorphology and carbon along the East River Abandoned channel Floodplain Floodplain Low P/L Sediment & Carbon

Geomorphology and carbon in N. St. Vrain Creek

Metabolite (GC-MS) in dissolved organic matter

Metabolic pathways for the decomposition of organic carbon vary seasonally in relation to hydrology

High flow conditions homogenize dissolved organic matter composition

DOM chemistry

Microbial anabolism

Convergent DOM composition

Lynch, Sutfin, et al. (In review)

Low flow conditions increase dissolved organic matter heterogeneity

DOM chemistry

Microbial catabolism

Divergent DOM composition

Rivers & Carbon Sediment Flux Hydrology & Floods

Human

Future Work /
Conclusion

Hydrologic influence on carbon dynamics

Modeled stream flow: 20 climate scenarios

Changes in the flow regime:

- Bank erosion
- Sediment dynamics
- Carbon dynamics

San Marcos River

THE

DEFENDING THE FIRST AMENDMENT SINCE 1911

NEWS

LIFESTYLE V

SPORTS

OPINIONS ~

INTERACTIVE

Home > News > Hays County > The removal of Cape's Dam provokes disagreement

HAYS COUNTY

LATEST

SAN MARCOS

The removal of Cape's Dam provokes

disagreement

By Bri Watkins - Jun 8, 2016, 5:00 am

• 12413

Recreation...

Impact to wildlife?

Flooding?

Organic matter?

Human **Influence**

Freshwater Social-Ecological Systems

Dams are the largest impact on carbon in river corridors (Wohl et el., 2017)

Ecology

Environmental flows:

Integrate coarse particulate organic matter and carbon dynamics

Rivers & Carbon

Sediment Flux Hydrology & Floods

Geomorph & Carbon

Climate

Human

Future Work / Conclusion

Snake River altered hydrograph (Marston et al., 2005)

Spatial distribution of carbon in watersheds В Protein Lignin Fate and transport of contaminants likely to **Protein** Lignin prefer particular forms Protein Lignin of organic carbon Decomposition Distance downstream **Protein** Lignin Future Work / Conclusion

Conclusion

THANK YOU!

Rivers and floodplains are a significant component of the terrestrial carbon cycle

Erosion is influenced by sensitive components of hydrologic regimes

Anticipated changes in hydrologic regime are likely to alter sediment and carbon regime

River morphology and complexity influence both sediment and carbon dynamics

Changes to channel morphology and hydrologic regimes are likely to influence sediment and carbon